A Convenient Synthesis of (15,5S)-4-Alkyl-3-carbomethoxy-6,6-dimethylbicyclo[3.1.1]-hept-3-en-2-ones with High Optical Purity

Masataka Watanabe,* Tetsuya Abe, and Nobuyuki Harada
Institute for Chemical Reaction Science, Tohoku University, Katahira, Aoba-ku, Sendai 980-77, J apan

Received J uly 1, 1996
Compounds with the 6,6-dimethylbicyclo[3.1.1]heptane skeleton (so-called pinaneskeleton) have been frequently used as chiral starting materials for the asymmetric synthesis of natural products. ${ }^{1}$ Previously, we reported that the methylation of sulfone (+)-3a prepared from β-pinene (-)-1 via nopinone (+)-2 by the treatment with potassium carbonate in acetonitrile at $50^{\circ} \mathrm{C}$ afforded the γ-dimethylated product (+)-3c as a major product without any formation of the γ-monomethylated product (+)3b. ${ }^{2}$ We also reported that $(+)$ - $\mathbf{3 b}$, derived from $(+)-\mathbf{2}$ by a different route, gave the stereocontrolled γ-alkylated product (+)-3d, having the S configuration, as a major product. We reported its utilization in the total synthesis of kanshone 4 (nardosinane sesquiterpene). ${ }^{3,4}$

In connection with our asymmetric synthesis of natural products, convenient syntheses of 6,6-dimethylbicyclo-[3.1.1]hept-3-en-2-one derivatives such as (-)-3, (-)-7a, and its γ-alkyl homologues (-)-8 have been required. Although they may be easily derived from (-)-2, preparation of $(-)-\mathbf{2}$ is difficult because of the poor natural abundance of $(+)-\mathbf{1} .^{5}$ Many synthetic routes to prepare $(-)-\mathbf{2}$ or its precursor $(+)-\mathbf{1}$ have been reported. Examples include the conversion from α-pinene (+)-5 to (+)1, ${ }^{6}$ transformation from (+)-camphor sulfonyl chloride to $(+)-\mathbf{1},{ }^{7}$ degradation of myrtenal to $\mathbf{2 , 8}$ the conversion from $(+)-5$ to (-)-2,9a and transformation from camphor to (-)2. ${ }^{10}$

Instead of utilization of (-)-2, we directed our attention to verbenone (-)-6a which is available as a chiral source

[^0]

Figure 1.

Figure 2.
for asymmetric synthesis of nagilactones, ${ }^{11}$ and reported that the new route from (+)-2 via apoverbenone (+)-9 to $(-)-\mathbf{6 a}$ and its C-4 alkyl homologues (-)-6b. ${ }^{\text {1d }}$ Still, our newly developed method is not practical on a large scale to produce $(+)-9$ because of the risk of explosion in the stage of the preparation of (+)-2 by ozonolysis ${ }^{9}$ and because of the toxicity and odor characteristics of diphenyl diselenide. Then, we focused on the enantiomeric purification of $\mathbf{6 a}$, expecting to obtain $(-)-\mathbf{3},(-)-\mathbf{7 a}$, and $(-)-8$ starting from $(-)-5$ via $(-)-6 \mathbf{a}$ as shown in Figure 2. Their enantiomers, (+)-7a and (+)-8, starting from $(+)-5$ via (+)-6a, could also be obtained, because both optical impure enantiomers of $\mathbf{6} \mathbf{a}$ are easily accessible

[^1]from 5. ${ }^{12,13}$ Finally, we have succeeded in the efficient enantiomeric purification of $(-)-\mathbf{6 a}$ by the inclusion complex method using a chiral host obtained from naturally occurring tartaric acid. ${ }^{14}$

There have been some results concerning the reactivity of the anion generated from 6a. Treatment of (-)-6a with sodium hydride in THF and successive quenching with boric acid afforded the β, γ-deconjugated ketone $(-)$-11a in high yield. ${ }^{15}$ We have also reported that (+)-3b afforded the β, γ-deconjugated ketone $(-)$ - 11b in 74\% yield by treatment with sodium hydride in THF at rt. ${ }^{\text {bb }}$ P. A. Wender et al. also reported the synthesis of taxol homologues in which the alkylation of $(+)-\mathbf{6 a}$ by potassium tert-butoxide in DME gave the α-alkylated product in a moderate yield. ${ }^{16}$ L. A. Paquette et al. have recently reported that oxidative coupling of the lithium anion of $(+)-\mathbf{6 a}$, which afforded a mixture of $\alpha-\gamma$ coupling products, $\alpha-\gamma$ and $\gamma-\gamma$ bis-coupling products, and $\gamma-\gamma$ coupling products, dependent on the presence of $\mathrm{Fe}(\mathrm{III})$ salt or $\mathrm{Cu}(\mathrm{II})$ salts. ${ }^{17} \mathrm{M}$. Majewski et al. reported that 6a afforded α-aldols under kinetic conditions and bisaldols at α - and γ-position under thermodynamic conditions. ${ }^{18}$ J udging from the results described above, it is clear that the position of alkylation is dependent on the electrophile and the reaction temperature.

In this work, we chose (-)-6a with 99\% ee as a chiral starting material ${ }^{14}$ to synthesize (-)-7a and (-)-8. The methoxycarbonylation did not proceed when using bases such as sodium hydride, potassium tert-butoxide, and LDA, at low temperature, but we found that the reaction carried out by the treatment with sodium hydride in dimethyl carbonate at ca. $50^{\circ} \mathrm{C}$ afforded (-)-7a as a sole product in 92% yield; ${ }^{19}$ the γ-methoxycarbonylated product (-)-7b was not isolated at all.

Next, we studied the regioselective γ-al kylation of (-)7a. As the methoxycarbonyl group of (-)-7a is less

[^2]

Figure 3.
electron withdrawing compared with the phenylsulfonyl group in (+)-3a, it was expected that the alkylation of $(-)-7 a$ would afford γ-monoalkylated products (-)-8 without formation of γ-bisalkylated products corresponding to $(+)-3 \mathbf{c}$. On the other hand, it was uncertain whether (-)-7a, which has a less bulky methoxycarbonyl group, as compared to a sulfonyl group, would give γ-monoalkylated products (-)-8 or α-monoalkylated products 10. ${ }^{3,4 \mathrm{~b}}$ In order to optimize the reaction conditions and products, methylation of $(-)$-7a with methyl iodide was carried out. Treatment of (-)-7a with a large excess of methyl iodide at $50^{\circ} \mathrm{C}$ for 5 h gave (-)-8a and 10a in 83% and 14% yield, respectively. These alkylation reactions are sensitive to the alkyl halides used. The reaction with activated alkyl bromides, such as allyl bromide, 3-bromo-2-methyl-1-propene, and benzyl bromide, proceeded smoothly within 5 h to give the desired products $\mathbf{8 c}, \mathbf{8 e}$, and 8f, respectively, in moderate yields. Interestingly, when 3-chloro-2-methyl-1-propene was used as the electrophile, even at ca. $80{ }^{\circ} \mathrm{C}$ for 12 h , no alkylated products were obtained and 7a was recovered completely. The reaction with propargyl bromide was so sluggish that it took 10 h to complete the reaction, and the desired product 8d was obtained in 57% yield. The reaction with a nonactivated alkyl bromide, such as 1-bromo-3-butene, gave no product, and the starting material was completely recovered. On the other hand, the reaction with ethyl iodide gave the desired $\mathbf{8 b}$ in 61% and $\mathbf{1 0 b}$ in 19% although the reaction was al so sluggish and it took 12 h to complete the reaction.

According to the procedure shown in Figure 2, (+)-7a and (+)-8 could be also easily synthesized from (+)-6a. An application of $(-)-7 a$ and $(-)-8$ to the synthesis of natural products is currently in progress.

Experimental Section

General. ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded with TMS as an internal standard in CDCl_{3}. All reactions were carried out under N_{2} or Ar atmosphere. Anhydrous MgSO_{4} was used for drying extracts on aqueous workup. Column chromatography was performed on 70-230 mesh silica gel (Merck), and the solvents for elution are

[^3]Table 1. Alkylation of (-)-7a with Alkyl Halide

entry	alkyl halide	reaction conditions		yield (\%)	ratio of $\mathbf{8 : 1 0}$
		temp (${ }^{\circ} \mathrm{C}$)	time (h)		
a	Methyl Iodide	50	5	97	5.6:1
b	Ethyl Iodide	50	12	80	3.3:1
c	Allyl Bromide	50	5	82	2.0:1
d	Propargyl Bromide	50	10	77	4.8:1
e-1	3-Chloro-2-methyl-1-propene	80	12		reaction
e-2	3-Bromo-2-methyl-1-propene	50	5	81	3.0:1
f	Benzyl Bromide	50	5	65	3.2:1
g	1-Bromo-3-butene	80	12	nor	reaction

shown in parentheses. All analytical samples were purified again by HPLC.

Preparation of ($\mathbf{1 5}, \mathbf{5 S}$)-(-)-Verbenone (6a). The enone (-)-6a used in this work was prepared according to the published procedure. ${ }^{14}$ This enantiomeric purification was scaled up four times. The optical resolution started from 78\% ee (-)-6a (30 g, 200 mmol) to afford 99% ee (-)-6a (11.5 g); $[\alpha]^{22} \mathrm{D}-273.5^{\circ}$ (c 1.0, CHCl_{3}). Enantiomeric excess of (-)-6a was determined by HPLC using the Chiralpak AS column (available from Daicel Chemical Industries Ltd, J apan) and hexane: EtOH (95:5).

Preparation of (15,55)-3-Carbomethoxy-4-methyl-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one (7a) from (-)-Verbenone (6). A mixture of (-)-6 $(3.0 \mathrm{~g}, 20 \mathrm{mmol}$) and sodium hydride (60% mineral oil dispersion) ($1.2 \mathrm{~g}, 30 \mathrm{mmol}$) in dimethyl carbonate (20 mL) was stirred at rt for 2 h . Monitoring on TLC showed that no reaction proceeded. The reaction temperature was elevated to $50-60^{\circ} \mathrm{C}$, and the reaction mixture was stirred 3 h . An additional portion of dimethyl carbonate (10 mL) was added after 3 h , and then the reaction mixture was stirred at $50-60^{\circ} \mathrm{C}$ until the starting material was not detected by TLC monitoring. The reaction mixture was diluted with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, and extracted with ether. The ethereal layer was washed with water and brine, dried, and evaporated, affording a crude product, which was purified by column chromatography (ether-hexane, 1:1) to give (-)-7a ($3.84 \mathrm{~g}, 92 \%$) as an oil: $[\alpha]_{\mathrm{D}}$ -216.1° (c 1.37, CHCl_{3}); IR (neat) 1737, $1683 \mathrm{~cm}^{-1,1 \mathrm{H}} \mathrm{NMR} \delta$ 1.05 (s, 3H), 1.50 (s, 3H), 2.14 (d, J $=9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.17 (s, 3H), 2.53 (dd, $\mathrm{J}=6.1$ and $6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dd, $\mathrm{J}=6.1$ and 6.1 Hz , 1 H), 2.81 (ddd, J $=6.1,6.1$, and $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.85(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 21.57,21.99,26.30,38.91,50.53,51.74,53.24,57.12$, 126.06, 165.61, 171.69, 198.16. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}$: C , 69.19; H, 7.75. Found: C, 68.98; H, 7.79.

Reaction of (-)-7a with Methyl Iodide. A mixture of (-)$7 \mathrm{a}(208 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$, and methyl iodide ($0.5 \mathrm{~mL}, 8.0 \mathrm{mmol}$) in acetone (10 mL) was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was passed through a short SiO_{2} pad eluted by a mixture of ether and hexane (1:1). The obtained eluant was evaporated to afford a crude mixture, which was purified by column chromatography (ether-hexane, 1:1) to give (1S,3S,5S)-3-carbomethoxy-3-methyl-4-methylene-6,6-di-methylbicyclo[3.1.1]hept-3-en-2-one (10a) ($32 \mathrm{mg}, 14 \%$) as a minor product; IR (neat) 1733 and $1716 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.07$ $(\mathrm{s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (ddd, J $=5.7,5.7$, and $10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.79(\mathrm{dd}, \mathrm{J}=5.7$ and 5.7 $\mathrm{Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, \mathrm{J}=5.7$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 5.08(\mathrm{~s}$, 1 H), and $5.11(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{4 \mathrm{~b}}{ }^{13} \mathrm{C}$ NMR $\delta 22.57,26.72,27.77,30.63$, $43.13,52.51,52.55,58.66,59.04,112.10,148.52,171.70,210.23$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 70.23 ; \mathrm{H}, 8.17$. Found: C, 70.39; H, 8.24. Continued column chromatography afforded (1S,5S)-3-carbomethoxy-4-ethyl-6,6-dimethyl bicyclo[3.1.1]hept-3-en-2one (8a) ($184 \mathrm{mg}, 83 \%$) as a major product: $[\alpha]_{\mathrm{D}}-176.9^{\circ}$ (c 1.63, CHCl_{3}); IR (neat) 1737, $1687 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}^{4 b} \delta 1.05$ (s, 3H), $1.10(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.38(\mathrm{dq}, \mathrm{J}=7.6$ and $11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dq}, \mathrm{J}=7.6$ and 11.4 $\mathrm{Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddd, J $=5.9,5.9$, and $9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR $\delta 11.10,22.26,26.46,28.40,39.51,48.46,51.95$, $53.45,57.32,125.59,165.85,175.27,198.79$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 70.23 ; \mathrm{H}, 8.17$. Found: $\mathrm{C}, 70.36 ; \mathrm{H}, 8.31$.

Reaction of (-)-7a with Ethyl lodide. A mixture of (-)7a (208 mg, 1.0 mmol$), \mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$, and ethyl iodide ($0.5 \mathrm{~mL}, 6.2 \mathrm{mmol}$) in acetone (10 mL) was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 12 h . The workup was carried out as described above and purification by column chromatography (ether-hexane, 1:1)
gave (1S,3S,5S)-3-carbomethoxy-3-ethyl-4-methylene-6,6-dimeth-ylbicyclo[3.1.1]hept-3-en-2-one 10b ($44 \mathrm{mg}, 19 \%$) as a minor product: IR (neat) $1733,1718 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H})$, 2.13 (dq, J = 7.3 and $14.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.25(\mathrm{dq}, \mathrm{J}=7.3$ and 14.6 $\mathrm{Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, \mathrm{J}=5.7,5.7$, and $11 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, \mathrm{J}=$ 5.7 and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (dd, J = 5.7 and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.76 (s, 3H), $5.05(\mathrm{~s}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 10.55,22.37$, 26.66, 26.71, 35.58, 43.71, 52.34, 52.62, 58.55, 63.77, 112.97, 146.49, 170.94, 208.13. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 71.14 ; \mathrm{H}$, 8.54. Found: $\mathrm{C}, 71.27 ; \mathrm{H}, 8.65$. Continued column chromatography afforded (1S,5S)-3-carbomethoxy-4-propyl-6,6-dimethylbicyclo-[3.1.1]hept-3-en-2-one (8b) ($144 \mathrm{mg}, 61 \%$) as a major product; $[\alpha]_{\mathrm{D}}-177.3^{\circ}$ ($\mathrm{c} 1.31, \mathrm{CHCl}_{3}$); IR(neat) $1736,1687 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 0.97$ (t, J $=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.51$ (sext, $\mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.45(\mathrm{~m}, 2 \mathrm{H})$, 2.61 (dd, J = 5.9 and $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.75 (dd, J = 5.9 and 5.9 Hz , 1 H), 2.83 (ddd, J $=5.9,5.9$, and $9.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84\left(\mathrm{~s}, 3 \mathrm{H}\right.$); ${ }^{13} \mathrm{C}$ NMR δ 14.14, 20.14, 22.09, 26.38, 37.10, 39.42, 48.64, 51.79, $53.32,57.21,126.13,165.78,173.92,198.67$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 71.14 ; \mathrm{H}, 8.54$. Found: $\mathrm{C}, 71.17 ; \mathrm{H}, 8.59$.

Reaction of (-)-7a with Allyl Bromide. A mixture of (-)7a ($208 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$, and allyl bromide ($605 \mathrm{mg}, 5 \mathrm{mmol}$) in acetone (10 mL) was stirred at 50 ${ }^{\circ} \mathrm{C}$ for 5 h . The workup was carried out as described above, and purification by column chromatography (ether-hexane, 1:1) gave ($1 \mathrm{~S}, 3 \mathrm{~S}, 5 \mathrm{~S}$)-3-allyl-3-carbomethoxy-4-methylene-6,6-dimeth-ylbicydo[3.1.1]hept-3-en-2-one (10c) ($67 \mathrm{mg}, 27 \%$) as a minor product: IR (neat) 1736, $1717 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.02$ ($\mathrm{s}, 3 \mathrm{H}$), 1.40 $(\mathrm{s}, 3 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.63$ (ddd, J = 5.7, 5.7, and 11 $\mathrm{Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=5.7$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=6.6$ and $13.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.86 (dd, J = 5.7 and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, J = 6.6 and $13.9,1 \mathrm{H}$), $3.76(\mathrm{~s}, 3 \mathrm{H}), 4.98-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H})$, 5.15, (s, 1H), 5.75-5.85 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\delta 22.46,26.29,26.65$, 43.47, 46.54, 52.55, 52.58, 58.61, 63.41, 113.73, 118.24, 133.76, 145.66, 170.78, 207.28. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 72.54 ; \mathrm{H}$, 8.12. Found: $\mathrm{C}, 72.44 ; \mathrm{H}, 8.21$. Further elution gave ($1 \mathrm{~S}, 5 \mathrm{~S}$)-3-carbomethoxy-4-(3-butenyl)-6,6-dimethyl bicyclo[3.1.1]hept-3-en-2-one (8c) ($258 \mathrm{mg}, 55 \%$) as a major product: $[\alpha]_{D}-188.5^{\circ}$ (c $1.37, \mathrm{CHCl}_{3}$); IR (neat) $1736,1685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 1.05$ (s, 3H), $1.51(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.47-$ $2.59(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, \mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=$ 5.9 and $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.82 (ddd, J = 5.9, 5.9 , and $9.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}) 5.01-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.75-5.85(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $21.94,26.17,30.58,34.36,39.11,48.40,51.56,53.11,57.00$, 115.51, 126.18, 136.42, 165.38, 172.87, 198.20. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}: \mathrm{C}, 72.54 ; \mathrm{H}, 8.12$. Found: C, 72.81; $\mathrm{H}, 8.15$.

Reaction of (-)-7a with Propargyl Bromide. A mixture of (-)-7a ($208 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$, and propargyl bromide ($675 \mathrm{mg}, 5 \mathrm{mmol}$) in acetone (10 mL) was stirred at $50^{\circ} \mathrm{C}$ for 10 h . The workup was carried out as described above, and purification by column chromatography (ether-hexane, $1: 1$) gave ($1 \mathrm{~S}, 3 \mathrm{3S}, 5 \mathrm{~S}$)-3-carbomethoxy-3-propar-gyl-4-methylene-6,6-dimethylbicyclo[3.1.1]hept-3-en-2-one (10d) ($29 \mathrm{mg}, 12 \%$) as a minor product: ${ }^{19}$ IR (neat) $1736,1717 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H})$, $2.13(\mathrm{t}, \mathrm{J}=2.3,1 \mathrm{H}), 2.70(\mathrm{ddd}, \mathrm{J}=5.7,5.7$, and $11 \mathrm{~Hz}, 1 \mathrm{H})$, 2.81 (dd, $\mathrm{J}=5.7$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88 (dd, J $=5.7$ and 5.7 Hz , 1 H), 3.05 (dd, J $=2.3$ and $14 \mathrm{~Hz}, 1 \mathrm{H}$), 3.11 (dd, J $=2.3$ and 14 $\mathrm{Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H})$ and $5.24(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 22.49, 26.58, 27.09, 31.76, 43.53, 52.33, 52.82, 58.48, 61.68, 71.94, 79.60, 114.92, 144.47, 169.88, 206.20. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$: $\mathrm{C}, 73.13 ; \mathrm{H}, 7.37$. Found: $\mathrm{C}, 73.14 ; \mathrm{H}, 7.36$. Further elution gave (1S,5S)-3-carbomethoxy-4-(3-butynyl)-6,6-dimethylbicyclo-[3.1.1]hept-3-en-2-one (8d) ($140 \mathrm{mg}, 57 \%$) as a major product product: $[\alpha]_{D}-161.6^{\circ}$ (c $1.41, \mathrm{CHCl}_{3}$); IR (neat) $1737,1684 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.09(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.17(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.73(\mathrm{~m}, 3 \mathrm{H})$, 2.77 (dd, J $=5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.85 (ddd, J $=5.9,5.9$ and 9.5 Hz , 1H), 3.85 ($\mathrm{s}, 3 \mathrm{H}$); $100-\mathrm{MHz}{ }^{13} \mathrm{C}$ NMR δ 16.53, 22.21, 26.44, 33.73, 39.56, 48.93, 52.00, 53.5, 57.40, 69.97, 82.17, 127.08, 165.47, 171.72, 198.43. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$: C, 73.13; $\mathrm{H}, 7.37$. Found: C, 73.12; H, 7.34.

Reaction of (-)-7a with 3-Chloro-2-methyl-1-propene. A mixture of (-)-7a ($208 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$, and 3-chloro-2-methylpropene ($590 \mathrm{mg}, 5 \mathrm{mmol}$) in acetone (10
mL) was stirred at $50^{\circ} \mathrm{C}$ for 12 h . The starting material (-)-7a was recovered after the workup was carried out as described above.

Reaction of (-)-7a with 3-Bromo-2-methyl-1-propene. A mixture of (-)-7a (208 mg, 1.0 mmol$), \mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$, and 3 -bromo-2-methyl-1-propene ($590 \mathrm{mg}, 5 \mathrm{mmol}$) in acetone (10 mL) was stirred at $50^{\circ} \mathrm{C}$ for 5 h . The workup was carried out as described above, and purification by column chromatography (ether-hexane, 1:1) gave (1S,3S,5S)-3-carbomethoxy-3-(2-methyl-2-propenyl)-4-methylene-6,6-dimethyl bicyclo[3.1.1]-hept-3-en-2-one (10e) ($53 \mathrm{mg}, 20 \%$) as a minor product (53 mg , 20%): ${ }^{19}$ IR (neat) 1736, $1720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.99$ ($\mathrm{s}, 3 \mathrm{H}$), 1.40 $(\mathrm{s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{ddd}, \mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, \mathrm{J}=5.7$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, \mathrm{~J}=$ $14,1 \mathrm{H}$), 2.86 (dd, J $=5.7$ and $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.22 (d, J $=14 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.70(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{~s}$, 1H); ${ }^{13}$ C NMR $\delta 22.36,23.14,25.70,26.54,43.34,50.25,52.51$, 52.63, 58.72, 63.16, 113.05, 115.96, 141.90, 146.10, 171.05, 206.45. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}$: $\mathrm{C}, 73.24 ; \mathrm{H}, 8.46$. Found: $\mathrm{C}, 73.08 ; \mathrm{H}, 8.26$. Further elution gave ($1 \mathrm{~S}, 5 \mathrm{~S}$)-3-carbomethoxy-4-(3-methyl-3-butenyl)-6,6-dimethylbicyclo[3.1.1]hept-3-en-2one (8e) ($161 \mathrm{mg}, 61 \%$) as a major product: $[\alpha]_{\mathrm{D}}-177.6^{\circ}$ (c 1.74 CHCl_{3}); IR (neat) $1736,1686 \mathrm{~cm}^{-1}$; 1 H NMR $\delta 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.51$ $(\mathrm{s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.19(\mathrm{~m}$, $2 \mathrm{H}), 2.51-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{dd}, \mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (dd, $\mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddd, J $=5.9,5.9$, and 9.5 Hz , $1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $22.15,22.22,26.47,33.78,34.66,39.45,48.78,51.94,53.46,57.30$, 111.00, 126.24, 143.98, 165.71, 173.68, 198.61. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 73.24 ; \mathrm{H}, 8.46$. Found: C, 72.91; $\mathrm{H}, 8.40$.

Reaction of (-)-7a with Benzyl Bromide. A mixture of $(-)-7 \mathrm{a}(208 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$, and benzyl bromide ($590 \mathrm{mg}, 5 \mathrm{mmol}$) in acetone (10 mL) was stirred at $50^{\circ} \mathrm{C}$ for 5 h . The workup was carried out as described above,
and purification by column chromatography (ether-hexane, 1:1) gave ($1 \mathrm{~S}, 3 \mathrm{~S}, 5 \mathrm{~S}$)-3-benzyl-3-carbomethoxy-4-methylene-6,6-dimeth-ylbicyclo[3.1.1]hept-3-en-2-one (10f) as a minor product (46 mg , 15%): $[\alpha]_{\mathrm{D}}-177.6^{\circ}$ (c $1.74 \mathrm{CHCl}_{3}$); IR (neat) $1736,1617 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}$, $3 \mathrm{H}), 2.36$ (ddd, J $=5.9,5.9$, and $11 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, \mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, \mathrm{J}=5.9$, and $5.9,1 \mathrm{H}), 3.47(\mathrm{~d}, \mathrm{~J}=13$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, \mathrm{~J}=13 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.23$ ($\mathrm{s}, 1 \mathrm{H}$), $7.13-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right)$ $\delta 22.5,25.0,26.4,42.3,46.4,52.64,52.66,58.8,64.3,115.6,127.0$, 127.9, 131.0, 136.3, 143.9, 171.1, 206.4. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}: \mathrm{C}, 76.47 ; \mathrm{H}, 7.44$. Found: $\mathrm{C}, 76.62 ; \mathrm{H}, 7.47$. Further elution gave (1S,5S)-3-carbomethoxy-4-(2-phenylethyl)-3-car-bomethoxy-6,6-dimethylbicyclo[3.1.1] hept-3-en-2-one (8f) (148 $\mathrm{mg}, 50 \%$) as a major product: IR (neat) $1732,1683 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\delta 1.04(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (dd, J = 5.9 and $5.9 \mathrm{~Hz}, 1 \mathrm{H}$), $2.69-2.93(\mathrm{~m}, 5 \mathrm{H}), 2.82(\mathrm{dd}, \mathrm{J}=$ 5.9, 5.9, and $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 7.18-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.26-$ $7.32(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 22.54,24.97, .26 .41,42.32$, $46.40,52.65,52.66,58.83,64.32,115.63,127.03,127.88,131.00$, 136.27, 143.92, 171.14, 206.44. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{3}$: C, 76.47; H, 7.44. Found: C, 76.48; H, 7.43.

Reaction of (-)-7a with 1-Bromo-3-butene. A mixture of $(-)-7 a(208 \mathrm{mg}, 1.0 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 10.0 \mathrm{mmol})$, and 1-bromo-3-butene ($590 \mathrm{mg}, 0.5 \mathrm{mmol}$) in acetone (10 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 5 h . The starting material (-)-7a was completely recovered after the workup was carried out as described above.

Acknowledgment. This work is supported by grants from the Ministry of Education, Science, and Culture, J apan (Priority Areas No. 082211201).
J 09612279

[^0]: (1) (a) Mori, K. Tetrahedron 1989, 45, 3233. (b) Huffman, J. W.; J oyner, H. H.; Lee, M. D.; J ordan, R. D.; Pennington, W. T. J. Org. Chem. 1991, 56, 2081. (c) Ho, T.-L. EnantioselectiveSynthesis. Natural Products from Chiral Terpenes, Wiley: New Y ork, 1992. (d) Watanabe, M.; Awen, B. Z.; K ato, M. J . Org. Chem. 1993, 58, 3923 and references cited therein.
 (2) The terms α and γ relate to the $\mathrm{C}(3)$ ketone in 3, 6, 8, and 9.
 (3) Kato, M.; Watanabe, M.; Awen, B. Z.; Vogler, B. Tetrahedron Lett. 1991, 32, 7439.
 (4) (a) K ato, M.; Watanabe, M.; Awen, B. Z. Tetrahedron Lett. 1991, 32, 7443. (b) Kato, M.; Watanabe, M.; Awen, B. Z. J. Org. Chem. 1993, 58, 5415.
 (5) (a) (1R ,5R)-(+)- β-pinene (+)-1 is relatively rare in nature, see: Baslas, K. K. Perfum. Oil Rec. 1959, 50, 823. (b) Recently, (+)-1 with 92% ee is available from Aldrich Chemical Co., but the price is very expensive, although (-)-1 with 92% ee is inexpensive. For the determination of the optical purity, see; Kato, M.; Watanabe, M.; Vogler, B.; Awen, B. Z.; Masuda, Y.; Tooyama, Y.; Yoshikoshi, A. J . Org. Chem. 1991, 56, 7071.
 (6) (a) Andrianome, M.; Delmond, B. J. Chem. Soc., Chem. Commun. 1985, 1203. (b) Brown, H. C.: J oshi, N. N. J. Org. Chem. 1988, 53, 4059 and references cited therein.
 (7) Kirmse, W.; Gruber, W. Chem. Ber. 1972, 105, 2764.
 (8) Fisher, R.; Lardelli, G.; J eger, O. Helv. Chim. Acta 1951, 34, 1575.
 (9) (a) J avallee, P.; Bouthillier, G. J . Org. Chem. 1986, 51, 1362 and references cited therein. (b) Gordon, P. M. Chem. Eng. News 1990, 68.
 (10) Paukstelis, J. V.; Macharia, B. W. Tetrahedron 1973, 29, 1955.

[^1]: (11) (a) Watanabe, M.; Awen, B. Z.; K ato, M.; Harada, N. Abstracts of Papers; 206th American Chemical Society National Meeting, Division of Organic Chemistry, Chicago, IL, August 1993; American Chemical Society: Washington, DC; p 360. (b) Watanabe, M.; Harada, N. Abstracts of Papers; 12th International Conference on the Chemistry of the Organic Solid State, Matsuyama, J apan, J uly 1995; p 32.

[^2]: (12) (a) Whitham, G. H. J. Chem. Soc. 1961, 2232. (b) Fallis, A. G. Can. J. Chem. 1975, 53, 1657. (c) Mori, K.; Mizuguchi, N., Matsui, M. Agr. Biol. Chem. 1976, 48, 1611. (-)-6a is commercially available, but the optical purity is very low (ca. 50\%); see reference 14.
 (13) The optical purity of 5 depends on the natural source; see Banthorpe, D. A.; Whittoker, D. Chem. Rev. 1966, 66, 643. Recently, both enantiomers, (-)- and (+)-7 with 97% ee, have become commercially available.
 (14) Toda, F. Tanaka, K., Watanabe, M. Abe, T., Harada, N. Tetrahedron Asym. 1995, 6, 1495. Recently, Paquette, L. A. et al. reported the synthesis of $(-)-\mathbf{6 a}$ in high optical purity starting from (-)-5; see Poupart, M.-A.; Lassalle, G.; Paquette, L. A. Org. Synth. 1990, 69, 173, and (+)-6a could be also synthesized from (+)-5.
 (15) Ohloff, G.; Giersch, W. Helv. Chim. Acta 1977, 60, 1496.
 (16) Wender, P. A.; Mucciaro, T. P. J . Am. Chem. Soc. 1992, 114, 5878.
 (17) Paquette, L. A.; Bzowej, E. I.; Branan, B. M.; Stanton, K. J . J . Org. Chem. 1995, 60, 7277.
 (18) Majewski, M ; Irvine, N. M.; Zook, S. E.; Synth. Commun. 1995, 25, 3237.
 (19) (a) Inokuch, T.; Asanuma, G.; Torii, S. J. Org. Chem. 1982, 47, 4622. (b) Boger, D. L.; Mullican, M., D.; Hellberg, M., R.; Patel, M. J . Org. Chem. 1985, 50, 1904. (c) Liu, H.-J ; Chew, S. Y.; Browne, E. N. C. Tetrahedron Lett. 1991, 32, 2005.
 (20) To our surprise, a small amount of unstable α, γ-bisalkylated product 12d, 12e, and 12f contaminated with 10d, 10e, and 10f, respectively, were isolated although 12a, 12b, and 12c were not isolated. ${ }^{1} \mathrm{H}(400 \mathrm{MHz})$ and IR data of $\mathbf{1 2 d}-\mathbf{f}$ are as follows. 12d: 1737 and $1716 \mathrm{~cm}^{-1} ; \delta 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H})$, $1.98(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{t}, \mathrm{J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, \mathrm{J}=5.9$, 5.9 , and $11 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (dd, J $=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.97$ (ddd, J = $2.5,6.8$, and $16 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, J $=2.5,6.8$, and $16 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, J $=2.5$ and $16 \mathrm{HZ}, 1 \mathrm{H}), 3.07(\mathrm{dd}, \mathrm{J}=2.5$ and $16 \mathrm{~Hz}, 1 \mathrm{H}), 3.20$ (dd, J $=5.8$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.79(\mathrm{~s}, 3 \mathrm{H})$ and $5.68(\mathrm{t}, \mathrm{J}=6.8,1 \mathrm{H})$. 12e: 1730 and $1720 \mathrm{~cm}^{-1} ; \delta 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 6 \mathrm{H})$, $2.06(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.65$ (ddd, J $=5.9,5.9$, and $11 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-$ $2.82(\mathrm{~m}, 5 \mathrm{H}), 3.21(\mathrm{dd}, \mathrm{J}=5.8$ and $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.71(\mathrm{~s}$, 1H), $4.79(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 5.58(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .12 \mathrm{f}: 1733$ and $1717 \mathrm{~cm}^{-1} ; 0.97(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, \mathrm{~J}=11 \mathrm{~Hz}, 1 \mathrm{H}), 2.47$ (ddd, J = 5.9, 5.9, and $11 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, \mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H})$,

[^3]: $3.25(\mathrm{dd}, \mathrm{J}=5.9$ and $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=7.6$ and $14 \mathrm{~Hz}, 1 \mathrm{H})$, 3.43 (dd, J = 7.6 and $14 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 5.61(\mathrm{t}, \mathrm{J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.29(\mathrm{~m}, 10 \mathrm{H})$.

 $a: R=M e$
 b: $: R=\mathrm{Et}$
 $\mathbf{c}: \mathrm{R}=$ allyl
 $\mathbf{d}: \mathrm{R}=$ propargyl
 d: $: R=$ propargyl
 e $: R=2-m e t h y l-1-$ propene
 i: $\mathrm{R}=$ = benzyl

